

# DISINFETTANTE AD AMPIO SPETTRO

# Clorossidante Elettrolitico

#### PRESIDIO MEDICO CHIRURGICO - REG. MIN. SAL. N. 18.617

SCHEDA TECNICA 15-01-2014

100 ml di soluzione contengono:

| Principi attivi:                                 | g      |
|--------------------------------------------------|--------|
| Sodio ipoclorito (Cloro attivo 1,1%; 11.000 ppm) | 1,15   |
| Eccipienti:                                      |        |
| Sodio carbonato (stabilizzanti)                  | 0,045  |
| Sodio tetraborato decaidrato (stabilizzanti)     | 0,040  |
| Acqua depurata q.b. a                            | 100,00 |

## PROPRIETA' CHIMICO FISICHE COMPATIBILITA'

Liquido limpido di colore leggermente paglierino, odore leggero di cloro, a base di ipoclorito di sodio, disinfettante ad azione ossidante ad ampio spettro d'azione.

pH =  $10.0 \pm 0.5$ . Solubile in acqua in tutti i rapporti. Peso specifico: 1.12.

L'ipoclorito di sodio è compatibile con i seguenti materiali: PVC, PE, PP, Poliacetale, POM, Buna-Gomma di Nitrile, Poliestere bisfenolico, Fibra di vetro, Teflon, Silicone, ABS, Policarbonato, Polisulfone, Acciaio inossidabile, Titanio.



I materiali che non sono compatibili sono: Acciaio di bassa lega, poliuretano, ferro e metalli in genere.

#### **MECCANISMO D'AZIONE**

Il meccanismo d'azione è legato allo sviluppo di cloro ossidante che agisce su componenti protoplasmatici cellulari distruggendo il microrganismo anche per interferenza su sistemi enzimatici per azione prevalente sui radicali -SH. La velocità di azione battericida del cloro è superiore a quella di altri agenti ossidanti come ad esempio l'acqua ossigenata e le sue concentrazioni attive risultano tra le più basse rispetto a quelle di altri prodotti del gruppo degli ossidanti.

#### SPETTRO D'AZIONE E CAMPI DI IMPIEGO

Lo spettro d'azione è ampio e comprende batteri Gram positivi; Gram negativi, miceti, funghi (3), Mycobacterium (4) ,Virus HBV, HCV, HIV (5) e spore. Le forme sporigene mostrano una resistenza da 10 a 1000 volte superiore a quella delle forme vegetative.

L'attività microbicida del cloro è funzione del pH: essa aumenta con il diminuire del pH.

Disinfezione di superfici dure; decontaminazione di frutta e verdure; disinfezione di oggetti impiegati in età neonatale.

# MODALITA' D'USO – SICUREZZA E TOSSICITA'

Disinfezione di superfici dure: diluire al 5% (550 ppm, 0.055% cloro attivo).

Tempo di contatto: 5 minuti.

<u>Decontaminazione di frutta e verdure</u>: diluire al 2% (220 ppm , 0,022% cloro attivo). Tempo di contatto: 15 minuti, poi procedere a risciacquo con acqua potabile.

<u>Pulizia e conservazione di biberons, poppatoi, tettarelle, stoviglie impiegate in età neonatale:</u> diluire al 2% (220 ppm , 0,022% cloro attivo). Tempo di contatto: 30 minuti; lasciare in immersione fino all'impiego successivo, al momento dell'uso sciacquare con acqua potabile.

Il prodotto non è irritante se impiegato secondo le indicazioni.

DL<sub>50</sub> orale su ratto: 26,4 ml/kg

#### **CONTROLLO QUALITA'**

L'azienda applica procedure di controllo qualità sul prodotto gestendolo nell'ambito di un sistema qualità certificato secondo le norme UNI EN ISO 9001 e UNI EN ISO 13485.

#### **AVVERTENZE**

Non ingerire. Tenere lontano dalla portata dei bambini. Da non usare su cute lesa e mucose. Evitare il contatto con gli occhi. In caso di contatto con gli occhi sciacquare abbondantemente con acqua. Il prodotto può sbiancare alcuni tessuti. In caso di incidente o malessere consultare un medico (se possibile mostrargli l'etichetta). Attenzione: non utilizzare in combinazione con altri prodotti, possono formarsi gas pericolosi (Cloro). Tenere lontano da alimenti, mangimi e bevande.

#### **CONSERVAZIONE E VALIDITA'**

Conservare il prodotto nella confezione originale in ambiente fresco, pulito ed asciutto, al riparo da fonti di calore e non esposto a luce solare diretta. Il periodo di validità di 30 mesi si riferisce al prodotto nel suo contenitore integro e correttamente conservato.

**Periodo di validità dopo la prima apertura**: se il prodotto viene conservato correttamente, prelevato con precauzione e mantenuto chiuso nel contenitore originario, il prodotto mantiene le sue caratteristiche fino ad esaurimento in tempi brevi (massimo 6 mesi).

#### **SMALTIMENTO**

Effettuare un eventuale smaltimento in conformità alla normativa locale sui reflui, tenuto conto di quanto riportato in composizione. Contenitore in polietilene.

#### **CONFEZIONI**

| Imballo primario                   | Imballo secondario    |
|------------------------------------|-----------------------|
| Flacone con bicchierino da 1000 ml | Cartone da 12 flaconi |
| Tanica da 5000 ml                  | Cartone da 4 taniche  |
| Tanica da 10000 ml                 | Singola               |

### FONTI BIBLIOGRAFICHE PRINCIPALI

- USP 24
- British Pharmacopeia 1993
- Medicamenta
- Martindale: The complete drug reference. 32th edition.
- Disinfection, Sterilization and Preservation. Seymour S. Block. Fourth edition 1991.
- "Disinfection, Sterilization and Waste Disposal". William A. Rutala et al.- Prevention and control of nosocomial infection 257-282 1987
- "The Behavior of Chlorine as a Water Disinfectant". Gordon M. Fair et al.-Jour. AWWA 1051-61 October 1948
- "Mode of Action of Chlorine". D.E. Green and P. K. Stumpf- Journal American Water Works Association. Vol. 38 1301-5 1946
- "The effect of chlorine in water on enteric viruses. The effect of combined chlorine on poliomyelitis and coxsackie viruses". Sally M. Kelly et al.- A.J.P.H., Vol.50 n.1 14-20 January 1960
- "Handbook of Chlorination". Geo Clifford White, 230-233 1992
- Hypochlorite, an essential disinfectant". Felix J. Tyndel et al.- The Lancet, June 23, 1418, 1984
- "Chlorine and Chlorophors". Goodman A. and Gilman L.S.- The Pharmacologycal Basis of Therapeutics, MacMillan Publ. Co., N.Y. & Ed., p. 973-974 1980
- "Effect of a chlorine disinfectant on Hepatitis C Virus (HCV) in vitro: analysis of HCV binding to the cell surface receptors and analysis of viral replication". Clementi M.. Acta Toxicol. Ther., Vol. XVIII, n.1, 1997

- "Hypochlorite Solutions and Viral Hepatitis". John A. Bryan- JAMA, Vol. 230 n. 7, p.960-1, Nov. 18 1974
- "Hypochlorites and related agents". MEDITEXT® Medical Managements, MICROMEDEX, Inc. Vol. 93 1974-1997
- "Sodium Hypochlorite". HAZARDTEXT® Hazard Managements, MICROMEDEX, Inc. Vol. 93 1974-1997
- "Drinking water purification- Methods". Drug Consults, MICROMEDEX, Inc. Vol. 93 1974-1997
- "Fondamenti di chimica farmaceutica". Runti C. Ed. Lint Trieste 1971
- "Efficacy and stability of two chlorine-containing antiseptics". Pappalardo G. et al.- Drugs Exptl. Clin. Res., XII (11) 905-909 1986
- "Evaluation of a disinfectant in accordance with Swiss standards". Pappalardo G et al.-Drugs Exptl. Clin. Res. IX (1) 109-113 1983
- "Stability of Sodium Hypochlorite Solutions". Theresa M. Fabian and Scott E. Walker- Am. J. Hosp. Pharm., 39 1016-7 1982
- "I meccanismi ossidanti dell'azione battericida del cloro e derivati".G. Piacenza, F. Rubino-Basi Raz. Ter. XVII, p.821-825 1987
- "Efficacy and stability of two chlorine-containing antiseptics" Pappalardo G. et al.- Drugs Exptl. Clin. Res., XII (11) 905-909 1986
- "Evaluation of a disinfectant in accordance with Swiss standards". Pappalardo G et al.-Drugs Exptl. Clin. Res. IX (1) 109-113 1983
- "Comparative in vitro study of three disinfectants (sodium hypochlorite, iodine tincture, chlorexidine) Their possible use in the treatment of peritonitis". Bianchi P. et al.- Proc. Ist. Italian Congr. CAPD, Siena, March 13-14, 1981
- "Studio in vitro dell'attività antifungina di due cloroderivati per l'impiego nell'antisepsi". Bianchi P. et al.- Annali d'Igiene, 1, 827-840, 1989
- "Sull'azione disinfettante di un cloroderivato nei confronti del virus influenzale". P. Crovari e P. Bagliani- Estratto dall'Informatore Medico, Sez. Clin. Scient., Vol.XIV, fasc. 21, 1959
- "Saggi sul potere battericida di due nuovi disinfettanti (Amuchina e Antisapril) S. Liddo-Ig. Mod. 1, 1940
- Sax's dangerous properties of industrial materials. Eighth edition, 1989.

## PROVE DI EFFICACIA EFFETTUATE

- 1. Prof. Antonio Pavan -Università degli Studi dell'Aquila Dipartimento di Medicina Sperimentale Scuola di Specializzazione in Patologia clinica "Test per la determinazione dell'attività battericida secondo il metodo CEN TC/216 EN 1040" Giugno 2000
- 2. Prof. Antonio Pavan -Università degli Studi dell'Aquila Dipartimento di Medicina Sperimentale Scuola di Specializzazione in Patologia clinica "Test per la determinazione dell'attività battericida secondo il metodo CEN TC/216 EN 1276" Giugno 2000
- 3. Prof. Antonio Pavan -Università degli Studi dell'Aquila Dipartimento di Medicina Sperimentale Scuola di Specializzazione in Patologia clinica "Test per la determinazione dell'attività fungicida secondo il metodo CEN TC/216 EN 1650" Giugno 2000
- **4.** Prof. Antonio Pavan -Università degli Studi dell'Aquila Dipartimento di Medicina Sperimentale Scuola di Specializzazione in Patologia clinica "Test per la determinazione dell'attività micobattericida secondo il metodo CEN TC/216 prEN 14348" Febbraio 2004
- **5.** Prof. Antonio Pavan -Università degli Studi dell'Aquila Dipartimento di Medicina Sperimentale Scuola di Specializzazione in Patologia clinica "Test per la determinazione dell'attività virucida verso i virus HBV –HCV HIV " Marzo 2004

